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Abstract

The Markov decision process (MDP) formulation used to
model many real-world sequential decision making problems
does not efficiently capture the setting where the set of avail-
able decisions (actions) at each time step is stochastic. Re-
cently, the stochastic action set Markov decision process (SAS-
MDP) formulation has been proposed, which better captures
the concept of a stochastic action set. In this paper we argue
that existing RL algorithms for SAS-MDPs can suffer from
potential divergence issues, and present new policy gradient
algorithms for SAS-MDPs that incorporate variance reduction
techniques unique to this setting, and provide conditions for
their convergence. We conclude with experiments that demon-
strate the practicality of our approaches on tasks inspired by
real-life use cases wherein the action set is stochastic.

Introduction

In many real-world sequential decision making problems,
the set of available decisions, which we call the action
set, is stochastic. In vehicular routing on a road network
(Gendreau, Laporte, and Séguin 1996) or packet routing on
the internet (Ribeiro, Sidiropoulos, and Giannakis 2008),
the goal is to find the shortest path between a source
and destination. However, due to construction, traffic, or
other damage to the network, not all pathways are always
available. In online advertising (Tan and Srikant 2012;
Mahdian, Nazerzadeh, and Saberi 2007), the set of avail-
able ads can vary due to fluctuations in advertising budgets
and promotions. In robotics (Feng and Yan 2000), actuators
can fail. In recommender systems (Harper and Skiba 2007),
the set of possible recommendations can vary based on prod-
uct availability. These examples capture the broad idea and
motivate the question we aim to address: how can we develop
efficient learning algorithms for sequential decision making
problems wherein the action set can be stochastic?

Sequential decision making problems without stochastic
action sets are typically modeled as Markov decision pro-
cesses (MDPs). Although the MDP formulation is remarkably
flexible, and can incorporate concepts like stochastic state
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transitions, partial observability, and even different (deter-
ministic) action availability depending on the state, it cannot
efficiently incorporate stochastic action sets. As a result, algo-
rithms designed for MDPs are not well suited to our setting of
interest. Recently, Boutilier et al. (2018) laid the foundations
for stochastic action set Markov decision processes (SAS-
MDPs), that extends MDPs to include stochastic action sets.
They also showed how the Q-learning and value iteration
algorithms, two classic algorithms for approximating optimal
solutions to MDPs, can be extended to SAS-MDPs.

In this paper we show that the lack of convergence guaran-
tees of the Q-learning algorithm, when using function approx-
imators in the MDP setting can potentially get exacerbated
in the SAS-MDP setting. We therefore derive policy gradient
and natural policy gradient algorithms for the SAS-MDP set-
ting and provide conditions for their almost-sure convergence.
Critically, since the introduction of stochastic action sets in-
troduces further uncertainty in the decision making process,
variance reduction techniques are of increased importance.
We therefore derive new approaches to variance reduction for
policy gradient algorithms that are unique to the SAS-MDP
setting. We validate our new algorithms empirically on tasks
inspired by real-world problems with stochastic action sets.

Related Work

While there is extensive literature on solving sequential de-
cision problems modeled as MDPs (Sutton and Barto 2018),
there are few methods designed to handle stochastic action
sets. Recently, Boutilier et al. (2018) laid the foundation for
studying MDPs with stochastic action sets by defining the
new SAS-MDP problem formulation, which we review in
the background section. After defining SAS-MDPs, Boutilier
et al. (2018) presented and analyzed the model-based value
iteration and policy iteration algorithms and the model-free
Q-learning algorithm for SAS-MDPs.

In the bandit setting, wherein individual decisions are opti-
mized rather than sequences of dependent decisions, sleeping
bandits extend the standard bandit problem formulation to al-
low for stochastic action sets (Kanade, McMahan, and Bryan
2009; Kleinberg, Niculescu-Mizil, and Sharma 2010). We
focus on the SAS-MDP formulation rather than the sleeping
bandit formulation because we are interested in sequential
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problems. Such sequential problems are more challenging be-
cause making optimal decisions requires one to reason about
the long-term impact of decisions, which includes reason-
ing about how a decision will influence the probability that
different actions (decisions) will be available in the future.

Although we focus on the model-free setting, wherein
the dynamics of the environment are not known a pri-
ori to the agent optimizing its decisions, in the alternative
model-based setting researchers have considered related prob-
lems in the area of stochastic routing (Papadimitriou and
Yannakakis 1991; Polychronopoulos and Tsitsiklis 1996;
Nikolova, Brand, and Karger 2006; Nikolova and Karger
2008). In stochastic routing problems, the goal is to find a
shortest path on a graph with stochastic availability of edges.
The SAS-MDP framework generalizes stochastic routing
problems by allowing for sequential decision making prob-
lems that are not limited to shortest path problems.

Background
MDPs and SAS-MDPs (Boutilier et al. 2018) are mathemat-
ical formulations of sequential decision problems. Before
defining SAS-MDPs, we define MDPs. We refer to the entity
interacting with an MDP or SAS-MDP and trying to optimize
its decisions as the agent.

Formally, an MDP is a tuple M = (S,B,P,R, γ, d0).
S is the set of all possible states that the agent can be in,
called the state set. Although our math notation assumes that
S is countable, our primary results extend to MDPs with
continuous states. B is a finite set of all possible actions that
the agent can take, called the base action set. St and At are
random variables that denote the state of the environment
and action chosen by the agent at time t ∈ {0, 1, . . . }. P is
called the transition function and characterizes how states
transition: P(s, a, s′) := Pr(St+1 = s′|St = s,At = a).
Rt ∈ [−Rmax, Rmax], a bounded random variable, is the
scalar reward received by the agent at time t, where Rmax is a
finite constant.R is called the reward function, and is defined
as R(s, a) := E[Rt|St = s,At = a]. The reward discount
parameter, γ ∈ [0, 1), characterizes how to utility of rewards
to the agent decays based on how far in the future they occur.
We call d0 the start state distribution, which is defined as
d0(s) := Pr(S0 = s).

We now turn to defining a SAS-MDP. Let the set of actions
available at time t be a random variable, At ⊆ B, which we
assume is always not empty, i.e., At �= ∅. Let ϕ character-
ize the conditional distribution of At: ϕ(s, α) := Pr(At =
α|St = s). We assume that At is Markovian, in that its dis-
tribution is conditionally independent of all events prior to
the agent entering state St given St. Formally, a SAS-MDP
is M′ = {M ∪ ϕ}, with the additional requirement that
At ∈ At.

A policy π : S × 2B × B → [0, 1] is a conditional dis-
tribution over actions for each state: π(s, α, a) := Pr(At =
a|St = s,At = α) for all s ∈ S, a ∈ α, α ⊆ B, and t, where
α �= ∅. Sometimes a policy is parameterized by a weight vec-
tor θ, such that changing θ changes the policy. We write πθ

to denote such a parameterized policy with weight vector θ.
For any policy π, we define the corresponding state-action
value function to be qπ(s, a) := E[

∑∞
k=0 γ

kRt+k|St =

s,At = a, π], where conditioning on π denotes that At+k ∼
π(St+k,At+k, ·) for all At+k and St+k for k ∈ [t + 1,∞).
Similarly, the state-value function associated with policy
π is vπ(s) := E[

∑∞
k=0 γ

kRt+k|St = s, π]. For a given
SAS-MDP M′, the agent’s goal is to find an optimal pol-
icy, π∗, (or equivalently optimal policy parameters θ∗) which
is any policy that maximizes the expected sum of discounted
future rewards. More formally, an optimal policy is any
π∗ ∈ argmaxπ∈ΠJ(π), where J(π) := E[

∑∞
t=0 γ

tRt|π]
and Π denotes the set of all possible policies. For notational
convenience, we sometimes use θ in place of π, e.g., to write
vθ, qθ, or J(θ), since a weight vector θ induces a specific
policy.

As shown by Boutilier et al. (2018), one way to model
stochastic action sets using the MDP formulation (rather than
the SAS-MDP formulation) is to define states such that one
can inferAt from St. Transforming an MDP into a new MDP
with At embedded in St in this way can result in the size of
the state set growing exponentially— by a factor of 2|B|. This
drastic increase in the size of the state set can make finding
or approximating an optimal policy prohibitively difficult.
Using the SAS-MDP formulation, the challenges associated
with this exponential increase in the size of the state set can
be avoided, and one can derive algorithms for finding or
approximating optimal policies in terms of the state set of
the original underlying MDP. This is accomplished using a
variant of the Bellman operator, T , which incorporates the
concept of stochastic action sets:

T πv(s) =
∑
α∈2B

ϕ(s, α)
∑
a∈α

π(s, α, a)
( ∑

s′∈S
P (s, a, s′)

(R(s, a) + γv(s′))
)

(1)

for all s ∈ S . Similarly, one can extend the Bellman optimal-
ity operator (Sutton and Barto 2018):

T ∗v(s) =
∑
α∈2B

ϕ(s, α)max
a∈α

∑
s′∈S

P (s, a, s′)(R(s, a) + γv(s′)).

Boutilier et al. (2018) showed that the stationary optimal
policies exists for SAS-MDPs and can be represented using
(state-specific) decision lists (or orderings/rankings) over the
action set. As a policy takes into account the available set of
actions, an optimal policy chooses the highest ranked action
from those that are available. Building upon these results,
Boutilier et al. (2018) proposed the following update for a
tabular estimate, q, of qπ

∗
:

q(St, At)← (1− η)q(St, At) + η(Rt + γmax
a∈At+1

q(St+1, a)).

(2)

Notice that the maximum is computed only over the available
actions, At+1, in state St+1. We refer to the algorithm using
this update rule as SAS-Q-learning.

Potential Limitations of SAS-Q-Learning

Although SAS-Q-learning provides a powerful first model-
free algorithm for approximating optimal policies for SAS-
MDPs, it inherits several of the drawbacks of the Q-learning
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Figure 1: θ → 2θ MDP

algorithm for MDPs. Just like Q-learning, in a state St

and with available actions At, the SAS-Q-learning method
chooses actions deterministically when not exploring: At ∈
argmaxa∈At

q(St, a). This limits its practicality for prob-
lems where optimal policies are stochastic, which is often the
case when the environment is partially observable or when
the use of function approximation causes state aliasing (Baird
1995). Additionally, if the SAS-Q-learning update converges
to an estimate, q, of qπ

∗
such that T v(s) = v(s) for all

s ∈ S, then the agent will act optimally; however, conver-
gence to a fixed-point of T is seldom achieved in practice,
and reducing the difference between v(s) and T v(s) (what
SAS-Q-learning aims to do) does not ensure improvement of
the policy (Sutton and Barto 2018).

SAS-Q-learning does not perform gradient ascent or de-
scent on any function, and it can cause divergence of the
estimator q when using function approximation, just like Q-
learning for MDPs (Baird 1995). In the setting where all
actions are always available, SAS-Q-learning reduces to stan-
dard Q-learning. Therefore, for all the cases in this setting
where Q-learning is unstable, SAS-Q-learning is also unsta-
ble. In the setting where all actions are not always available,
there exist additional cases where Q-learning is stable but
SAS-Q-learning is not. However, in such cases where Q-
learning is stable, its solution might not be particularly useful
as it does not incorporate the notion of stochasticity in the
action set (Section 8, Fig.2, Boutilier et al. 2018).

To see this, consider the SAS variant of the classical
θ → 2θ MDP (Tsitsiklis and Roy 1983) illustrated in
Figure 1. In this example there are two states, s1 (left in
Figure 1) and s2 (right), and two actions, a1 = left and
a2 = right. The agent in this example uses function ap-
proximation (Sutton and Barto 2018), with weight vector
θ ∈ R

2, such that q(s1, a1) = θ1, q(s2, a1) = 2θ1 and
q(s1, a2) = θ2, q(s2, a2) = 2θ2. In either state, if the agent
takes the left action, it goes to the left state, and if the
agent takes the right action, it goes to the right state. In
our SAS-MDP version of this problem, both actions are not
always available. Let Rt = 0 always, and γ = 1. Con-
sider the case where the weights of the q-approximation
are initialized to θ = [−2,−5]. Now suppose that a transi-
tion is observed from the left state to the right state, and
after the transition the left action is not available to the
agent. As per the SAS-Q-learning update rule provided in (2),
θ2 ← θ2 + η(r+ γ2θ2 − θ2). Since r = 0 and γ = 1, this is
equivalent to θ2 ← θ2 + ηθ2. Considering the off-policy set-
ting where this transition is used repeatedly on its own, then
irrespective of the learning rate, η > 0, the weight θ would
diverge to −∞. In contrast, had there been no constraint of
using max over q given the available actions, the Q-learning
update would have been, θ2 ← θ2+η(r+γ2θ1−θ2) because
action a1 has higher q-value than a2 due to θ1 > θ2. This
would make θ2 converge to the value −4 (the correct answer

is 0).
This provides an example of how the stochastic constraints

on the set of available actions can be instrumental in causing
the SAS-Q-learning method to diverge, and ignoring the
stochastic constraint can prevent Q-learning from converging
to the correct solution. We suspect more such cases can be
constructed by adapting examples from non-SAS setup (
Baird 1995, Gordon 1996, Chpt 11.2 Sutton and Barto 2018).

Policy Gradient Methods for SAS-MDPs

In this section we provide an alternative to the SAS-Q-
learning algorithm by deriving policy gradient algorithms
(Sutton et al. 2000) for the SAS-MDP setting. While the Q-
learning algorithm minimizes the error between T v(s) and
v(s) for all states s (using a procedure that is not a gradi-
ent algorithm), policy gradient algorithms perform stochastic
gradient ascent on the objective function J . That is, they use
the update θ ← θ + ηΔ, where Δ is an unbiased estimator
of ∇J(θ).

Unlike the Q-learning algorithm, policy gradient algo-
rithms for MDPs provide convergence guarantees to a crit-
ical point (local/global optima) even when using function
approximation, and can approximate optimal stochastic poli-
cies. However, ignoring the fact that actions are not al-
ways available and using off-the-shelf algorithms for MDPs
fails to fully capture the problem setting (Boutilier et al.
2018). It is therefore important that we derive policy gra-
dient algorithms that are appropriate for the SAS-MDP
setting, as they provide the first convergent model-free
algorithms for SAS-MDPs when using function approx-
imation. In the following lemma we extend the expres-
sion for the policy gradient for MDPs (Sutton et al. 2000;
Thomas 2014) to handle stochastic action sets.

Lemma 1 (SAS Policy Gradient). For a SAS-MDP, for all
s ∈ S ,

∇J(θ) =
∞∑
t=0

∑
s∈S

γt Pr(St = s|θ)
( ∑

α∈2B
ϕ(s, α)

∑
a∈α

qθ(s, a)
∂πθ(s, α, a)

∂θ

)
.

Proof. See Appendix A.

It follows from Lemma 1 that we can create unbiased
estimates of ∇J(θ), which can be used to update θ using
the well-known stochastic gradient ascent algorithm. This
algorithm is presented in Algorithm 12. Notably, this process
does not require the agent to know ϕ. Also, similar to the
SAS-Q-learning method, the policy can be parameterized
such that it is not required to embed the available actions as
a part of the state. One such parameterization is provided in
Appendix F. Notice that in the special case where all actions
are always available, the expression in Lemma 1 degenerates
to the policy gradient theorem for MDPs (Sutton and Barto
2018). We now establish that SAS policy gradient algorithms
are guaranteed to converge to locally optimal policies under
the following standard assumptions,
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Assumption A1 (Differentiable). For any state, action-set,
and action triplet (s, α, a), policy πθ(s, α, a) is continuously
differentiable in the parameter θ.
Assumption A2 (Lipschitz smooth gradient). Let Θ denote
the set of all possible parameters for policy πθ, then for some
constant L,

‖∇J(θ)−∇J(θ̄)‖ ≤ L‖θ − θ̄‖∀θ, θ̄ ∈ Θ.

Assumption A3 (Learning rate schedule). Let ηtθ be the
learning rate for updating policy parameters θ, then,

∞∑
t=0

ηtθ =∞,
∞∑
t=0

(ηtθ)
2 <∞.

All the assumptions (A1-A3) are satisfied under standard
policy parameterization techniques (linear-function/neural-
networks with softmax) and appropriately set learning rates.
Lemma 2. Under Assumptions (A1)-(A3), the SAS policy
gradient algorithm causes ∇J(θt) → 0 as t → ∞, with
probability one.

Proof. See Appendix B.

Natural policy gradient algorithms (Kakade 2002) extend
policy gradient algorithms to follow the natural gradient of J
(Amari 1998). In essence, whereas policy gradient methods
perform gradient ascent in the space of policy parameters by
computing the gradient of J as a function of the parameters
θ, natural policy gradient methods perform gradient ascent
in the space of policies (which are probability distributions)
by computing the gradient of J as a function of the policy, π.
Thus, whereas policy gradient implicitly measures distances
between policies by the Euclidean distance between their
policy parameters, natural policy gradient methods measure
distances between policies using notions of distance between
probability distributions. In the most common form of natural
policy gradients, the distances between policies are measured
using a Taylor approximation of Kullback-Leibler divergence
(KLD). By performing gradient ascent in the space of policies
rather than the space of policy parameters, the natural policy
gradient becomes invariant to how the policy is parameter-
ized (Thomas, Dann, and Brunskill 2018), which can help to
mitigate the vanishing gradient problem in neural networks
and improve learning speed (Amari 1998).

The natural policy gradient (using a Taylor approxima-
tion of KLD to measure distances) is ∇̃J(θ) := F−1

θ ∇J(θ)
where Fθ is the Fisher information matrix (FIM) associated
with the policy πθ. Although the FIM is a well-known quan-
tity, it is typically associated with a parameterized proba-
bility distribution. Here, πθ is a collection of probability
distributions—one per state. This raises the question of what
Fθ should be when computing the natural policy gradient.
Following the work of Bagnell and Schneider (2003) for
MDPs, we show that the FIM, Fθ, for computing the natural
policy gradient for a SAS-MDP can also be derived by view-
ing πθ as a distribution over possible trajectories (sequences
of states, available action sets and executed actions).

Property 1 (Fisher Information Matrix). For a pol-
icy, parameterized using weights θ, let ψθ(s, α, a) :=
∂ log πθ(s, α, a)/∂θ, then the Fisher information matrix is,

Fθ =

∞∑
t=0

∑
s∈S

γt Pr(St = s|θ)
∑
α∈2B

(
ϕ(s, α)

∑
a∈α

πθ(s, α, a)ψθ(s, α, a)ψθ(s, α, a)�
)
.

Proof. See Appendix C.

Furthermore, Kakade (2002) showed that many terms in
the definition of the natural policy gradient cancel, providing
a simple expression for the natural gradient which can be
estimated with time linear in the number of policy parameters
per time step. We extend the result of Kakade (2002) to the
SAS-MDP formulation in the following lemma:
Lemma 3 (SAS Natural Policy Gradient). Let w be a param-
eter such that,

∂

∂w
E

[
1

2

∞∑
t

γt
(
ψθ(St,At, At)

�w − qθ(St, At)
)2]

= 0,

then for all s ∈ S inM′, ∇̃J(θ) = w.

Proof. See Appendix C.

From Lemma 3, we can derive a computationally efficient
natural policy gradient algorithm by using the well-known
temporal difference algorithm (Sutton and Barto 2018), mod-
ified to work with SAS-MDPs, to estimate qθ with the ap-
proximator ψθ(St,At, At)

�w, and then using the update
θ ← θ + ηw. This algorithm, which is the SAS-MDP
equivalent of NAC-TD (Bhatnagar et al. 2008; Degris, Pi-
larski, and Sutton 2012; Morimura, Uchibe, and Doya 2005;
Thomas and Barto 2012), is provided in Algorithm 2 in Ap-
pendix E.

Adaptive Variance Mitigation

In the previous section, we derived (natural) policy gradient
algorithms for SAS-MDPs. While these algorithms avoid
the divergence of SAS-Q-learning, they suffer from the high
variance of policy gradient estimates (Kakade and others
2003). As a consequence of the additional stochasticity that
results from stochastic action sets, this problem can be even
more severe in the SAS-MDP setting. In this section, we
leverage insights from the Bellman equation for SAS-MDPs,
provided in (1), to reduce the variance of policy gradient
estimates.

One of the most popular methods to reduce variance is the
use of a state-dependent baseline b(s). Sutton et al. (2000)
showed that, for any state-dependent baseline b(s):

∇J(θ) = E

[ ∞∑
t=0

γtψθ(s, α, a)

(
qθ(s, a)− b(s)

)]
. (3)

For any random variables X and Y , we know that the vari-
ance of X − Y is given by var(X − Y ) = var(X) +
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var(Y ) − 2cov(X,Y ), where cov stands for covariance.
Therefore, the variance of X − Y is lesser than variance
of X if 2cov(X,Y ) > var(Y ). As a result, any state de-
pendent baseline b(s) whose value is sufficiently corre-
lated to the expected return, qθ(s, a), can be used to re-
duce the variance of the sample estimator of (3). A base-
line dependent on both the state and action can have higher
correlation with qθ(s, a), and could therefore reduce vari-
ance further. However, such action dependent baselines can-
not be used directly, as they can result in biased gradi-
ent estimates. Developing such baselines remains an active
area of research for MDPs (Thomas and Brunskill 2017;
Grathwohl et al. 2017; Liu et al. 2017; Wu et al. 2018;
Tucker et al. 2018) and is largely complementary to our
purpose. Further, even the optimal state-dependent baseline
(Greensmith, Bartlett, and Baxter 2004), which leads to the
minimum variance gradient estimator, is not feasible to com-
pute and only under certain restrictive assumptions reduces
to the common choice of state-value function estimator, v̂(s).
Therefore, in the following, we propose multiple baselines
that are easy to compute, and then combine them optimally.

We now introduce a baseline for SAS-MDPs that lies be-
tween state-dependent and state-action-dependent baselines.
Like state-dependent baselines, these new baselines do not
introduce bias into gradient estimates. However, like action-
dependent baselines these new baselines include some infor-
mation about the chosen actions. Specifically, we propose
baselines that depend on the state, St, and available action
set At, but not the precise action, At.

Recall from the SAS Bellman equation (1) that the state-
value function for SAS-MDPs can be written as, vθ(s) =∑

α∈2B ϕ(s, α)
∑

a∈α π
θ(s, α, a)qθ(s, a). While we cannot

directly use a baseline dependent on the action sampled from
πθ, we can use baseline dependent on the sampled action
set. We consider a new baseline which leverages this in-
formation about the sampled action set α. This baseline is
q̄(s, α) :=

∑
a∈α π

θ(s, α, a)q̂(s, a), where q̂ is a learned es-
timator of the state-action value function, and q̄ represents its
expected value under the current policy, πθ, conditioned on
the sampled action set α.

In principle, we expect q̄(St,At) to be more correlated
with qθ(St, At) as it explicitly conditions on the action set
and does not compute an average over all action sets possible,
like v̂. Practically, however, estimating q values can be harder
than estimating v. This can be attributed to the fact that with
the same number of training samples, the number of parame-
ters to learn in q̂ is more than those in an estimate of vθ. This
poses a new dilemma of deciding when to use which baseline.
To get the best of both, we consider using a weighted combi-
nation of v̂(St) and q̄(St,At). In the following property we
establish that using any weighted combination of these two
baselines results in an unbiased estimate of the SAS policy
gradient.

Property 2 (Unbiased estimator). Let Ĵ(s, α, a, θ) :=
ψθ(s, α, a)

(
qθ(s, a) + λ1v̂(s) + λ2q̄(s, α)

)
and dπ(s) :=

(1 − γ)
∑∞

t γt Pr(St = s), then for any values of λ1 ∈ R

Algorithm 1: Stochastic Action Set Policy Gradient
(SAS-PG)

1 A = [λ1, λ2]
� = [−0.5,−0.5]� � Initialize λ’s

2 for episode = 0, 1, 2... do

# Collect transition batch using πθ

3 B = {(s0, α0, a0, r0), ..., (sT , αT , aT , rT )}
4 Ĝ(st) =

∑T−t
k=0 γ

krt+k

# Perform update on parameters using batch B

5 ψθ(s, α, a) = ∂ log πθ(s,α,a)
∂θ

6 � ← � + η�(Ĝ(s)− v̂�(s))∂v̂
�(s)
∂�

7 ω ← ω + ηω(Ĝ(s)− q̄ω(s, α))∂q̄
ω(s,α)
∂ω

8 θ ← θ + ηθ(Ĝ(s) + λ1v̂
�(s) +

λ2q̄
ω(s, α))ψθ(s, α, a) � Update πθ

# Automatically tune hyper-parameters for
variance reduction using B

9 B = [ψθ(s, α, a)v̂�(s), ψθ(s, α, a)q̄ω(s, α)]�

10 C = [ψθ(s, α, a)Ĝ(s)]�

11 Â← −(E[B�B])−1
E[B�C]

12 A← ηλA+ (1− ηλ)Â � Update λ’s

and λ2 ∈ R,

∇J(θ) = E

[
Ĵ(s, α, a, θ)

∣∣∣dπ, ϕ, π] .
Proof. See Appendix D.

The question remains: what values should be used for
λ1 and λ2 for combining v̂ and q̄ ? Similar problems of
combining different estimators has been studied in statistics
literature (Graybill and Deal 1959; Meir and others 1994)
and more recently for combining control variates (Wang et al.
2013; Geffner and Domke 2018). Building upon their ideas,
rather than leaving λ1 and λ2 as open hyperparameters, we
propose a method for automatically adapting A = [λ1, λ2]
for the specific SAS-MDP and current policy parameters, θ.
The following lemma presents an analytic expression for the
value of A that minimizes a sample-based estimate of the
variance of Ĵ .
Lemma 4 (Adaptive variance mitigation). If A = [λ1, λ2]

�,
B = [ψθ(s, α, a)v̂(s), ψθ(s, α, a)q̄(s, α)]�, and C =
[ψθ(s, α, a)qθ(s, a)]�, where A ∈ R

2×1,B ∈ R
d×2, and

C ∈ R
d×1, then the A that minimizes the variance of Ĵ is

given by

A = −
(
E
[
B�B

])−1
E
[
B�C

]
. (4)

Proof. See Appendix D.

Lemma 4 provides the values for λ1 and λ2 that result
in the minimal variance of Ĵ . Note that the computational
cost associated with evaluating the inverse of E

[
B�B

]
is

negligible because its dimension is always R
2×2, indepen-

dent of the number of policy parameters. Also, Lemma 4
provides the optimal values of λ1 and λ2, which still must
be approximated using sample-based estimates of B and C.
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Figure 2: (Top) Best performing learning curves on the domains considered. The probability of any action being available in the
action set is 0.8. (Bottom) Autonomously adapted values of λ1 and λ2 associated with v̂ and q̄, respectively, for the SAS-PG
results. Shaded regions correspond to one standard deviation obtained using 30 trials.

Furthermore, one might use double sampling for B to get
unbiased estimates of the variance minimizing value of A
(Baird 1995). However, as Property 2 ensures that estimates
of Ĵ for any value of λ1 and λ2 are always unbiased, we opt
to use all the available samples for estimating E[B�B] and
E[B�C].

Algorithm

Pseudo-code for the SAS policy gradient algorithm is pro-
vided in Algorithm 12. Let the estimators of vθ and qθ be v̂�
and q̂ω , which are parameterized using � and ω, respectively.
Let πθ corresponds to the policy parameterized using θ. Let
η�, ηω, ηθ and ηλ be the learning-rate hyper-parameters. We
begin by initializing the λ values to −0.5 each, such that it
takes an average of both the baselines and subtracts it off
from the sampled return. In Lines 3 and 4, we execute πθ to
observe the trajectory and compute the return. Lines 6 and
7 correspond to the updates for parameters associated with
v̂� and q̂ω , using their corresponding TD errors (Sutton and
Barto 2018). The policy parameters are then updated using
a combination of both the baselines. We drop the γt depen-
dency for data efficiency (Thomas 2014). As per Lemma 4,
for automatically tuning the values of λ1 and λ2, we create
the sample estimates of the matrices B and C using the tran-
sitions from batch B, in Lines 9 and 10. To update the values
of λ’s, we compute Â using the sample estimates of E[B�B]
and E[B�C]. While computing the inverse, a small diagonal
noise is added to ensure that inverse exists. As everything
is parameterized using smooth function, we know that the
subsequent estimates of A should not vary a lot. Since we
only have access to the sample estimate of A, we leverage
the Polyak-Rupert averaging in Line 12 for stability. Due
to space constraints, the algorithm for SAS natural policy
gradient is deferred to Appendix E.

Empirical Analysis

In this section we use empirical studies to answer the fol-
lowing three questions: (a) How do our proposed algorithms,
SAS policy gradient (SAS-PG) and SAS natural policy gra-
dient (SAS-NPG), compare to the prior method SAS-Q-
learning? (b) How does our adaptive variance reduction tech-
nique weight the two baselines over the training duration? (c)
What impact does the probability of action availability have
on the performances of SAS-PG, SAS-NPG, and SAS-Q-
learning? To evaluate these aspects, we first briefly introduce
three domains inspired by real-world problems.

Routing in San Francisco. This task models the problem
of finding shortest paths in San Francisco, and was first
presented with stochastic actions by Boutilier et al. (2018).
Stochastic actions model the concept that certain paths in the
road network may not be available at certain times. A positive
reward is provided to the agent when it reaches the destina-
tion, while a small penalty is applied at every time step. We
modify the domain presented by Boutilier et al. (2018) so
that the starting state of the agent is not one particular node,
but rather is uniformly randomly chosen among all possible
locations. This makes the problem more challenging, since it
requires the agent to learn the shortest path from every node.
All the states (nodes) are discrete, and edges correspond to
the action choices. Each edge is made available with some
fixed probability. The overall map is shown in Appendix.

Robot locomotion task in a maze. In this domain, the
agent has to navigate a maze using unreliable actuators. The
agent starts at the bottom left corner and a goal reward is
given when it reaches the goal position, marked by a star (see
Appendix for the figure). The agent is penalized at each time
step to encourage it to reach the goal as quickly as possible.
The state space is continuous, and corresponds to real-valued
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Figure 3: Best performances of different algorithms across different values of probabilities for action availability. The error bars
correspond to one standard deviation obtained using 30 trials.

Cartesian coordinates of the agent’s position. The agent has
16 actuators pointing in different directions. Turning each
actuator on moves the agent in the direction of the actuator.
However, each actuator is unreliable, and is therefore only
available with some fixed probability.

Product recommender system. In online marketing and
sales, product recommendation is a popular problem. Due
to various factors such as stock outage, promotions, delivery
issues etc., not all products can be recommended always. To
model this, we consider a synthetic setup of providing rec-
ommendation to a user from a batch of 100 products, each
available with some fixed probability and associated with
a stochastic reward corresponding to profit. Each user has
a real-valued context, which forms the state space, and the
recommender system interacts with a randomly chosen user
for 5 steps. The goal for the recommender system is to sug-
gest products that maximize total profit. Often the problem
of recommendation is formulated as a contextual bandit or
collaborative filtering problem, but as shown by Theocharous,
Thomas, and Ghavamzadeh (2015) these approaches fail to
capture the long term value of the prediction. Hence we resort
to the full RL setup.

Results

Here we only discuss the representative results for the three
major questions of interest. Plots for detailed evaluations are
available in Appendix F.

(a) For the routing problem in San Francisco, as both the
states and actions are discrete, the q-function for each state-
action pair has a unique parameter. When no parameters are
shared, SAS-Q-learning will not diverge. Therefore, in this
domain, we notice that SAS-Q-learning performs similarly
to the proposed algorithms. However, in many large-scale
problems, the use of function approximators is crucial for
estimating the optimal policy. For the robot locomotion task
in the maze domain and the recommender system, the state
space is not discrete and hence function approximators are
required to obtain the state features. As we saw in Section ,
the sharing of state features can create problems for SAS-Q-
learning. The increased variance in the performance of SAS-
Q-learning is visible in both the Maze and the Recommender
system domains in Figure 2. While the SAS-Q eventually
performs the same on the Maze domain, its performance

improvement saturates quickly in the recommender system
domain thus resulting in a sub-optimal policy.

(b) To provide visual intuition for the behavior of adap-
tive variance mitigation, we report the values of λ1 and λ2
over the training duration in Figure 2. As several factors are
combined through (4) to influence the λ values, it is hard
to pinpoint any individual factor that is responsible for the
observed trend. However, note that for both the routing prob-
lem in San Francisco and the robot navigation in maze, the
goal reward is obtained on reaching the destination and inter-
mediate actions do not impact the total return significantly.
Intuitively, this makes the action set conditioned baseline q̄
similarly correlated to the observed return as the state only
conditioned baseline, v̂, but at the expense of estimating sig-
nificantly more number of parameters. Thus the importance
for q̄ is automatically adapted to be closer to zero. On the
other hand, in recommender system, each product has a sig-
nificant amount of associated reward. Therefore, the total
return possible during each episode has a strong dependency
on the available action set and thus the magnitude of weight
for q̄ is much larger than that for v.

(c) To understand the impact of the probability of an action
being available, we report the best performances for all the
algorithms for different probability values in Figure 3. We
notice that in the San Francisco routing domain, SAS-Q-
learning has a slight edge over the proposed methods. This
can be attributed to the fact that off-policy samples can be
re-used without causing any divergence problems as state
features are not shared. For the maze and the recommender
system tasks, where function approximators are necessary,
the proposed methods significantly out-perform SAS-Q.

Conclusion

Building upon the SAS-MDP framework of Boutilier et al.
(2018), we studied an under-addressed problem of dealing
with MDPs with stochastic action sets. We highlighted some
of the limitations of the existing method and addressed them
by generalizing policy gradient methods for SAS-MDPs. Ad-
ditionally, we introduced a novel baseline and an adaptive
variance reduction technique unique to this setting. Our ap-
proach has several benefits. Not only does it generalize the
theoretical properties of standard policy gradient methods,
but it is also practically efficient and simple to implement.
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